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The formation of supersonic jet when an axisymmetric or planar nozzle is turned on has been the subject of a 

considerable number of experimental and theoretical studies, mainly in the ten years [1-4]. At the same time, the processes 
involved in such flows is not as well as understood as are steady-state jets. In particular, relaxation phenomena in two- 

dimensional unsteady jets, which can substantially affect the gasdynamic structure of the flow, have not been investigated well. 
1. Qualitative Laws. The process of starting a supersonic jet can be illustrated with the example of a simple laboratory 

model, in which at the initial time gas fills a high-pressure chamber, separated from a low-pressure chamber by a diaphragm. 

When the diaphragm ruptures, gas begins to flow through the nozzle into the low-pressure region, which is filled with a foreign 

gas. The outflowing gas acts as sort of piston, which produces a shock wave inside the foreign gas. At the same time, in the 

foreign gas a rarefaction wave forms with its center at the nozzle inlet and a constant flow is established in a time of the order 

of t, - r . /c ,  (r, and c. are the radius and velocity of sound in the nozzle throat). 
Initially the front of the outflowing gas moves according to the linear law x - t, i.e., as if this gas were flowing into 

a vacuum. Clearly, there should be a characteristic time t o at which the flooded space begins to have an effect and the 

dimensions of the region occupied by the flow begin to exceed r.  many times. No characteristic quantities with the dimension 
of length remain in the problem, which has a self-similar solution (when flow anisotropy is ignored). 

X ~ / P . / ( n + 2 )  

(n = 1 and 2 for a slotted and a cylindrical nozzle, respectively). 
Estimates for the laws of motion of a strong explosion in the one-dimensional approximation were made in [4], using 

the theory of a thin shock layer; the time t o characterizing the change of flow modes is given in [5]. 
At times t > > t o the counter pressure begins to play an increasing role, the mass of gas beyond the contact boundary 

increases, and finally a secondary shock wave, matching the pressure in the outflowing gas to the ambient pressure, forms in 

the working gas. This wave, propagating upward along the flow with velocities slower than the velocity of sound, gradually 

drifts from the section where it is formed near the nozzle to its steady-state position [6] 

. ~ .  . ~I/,i 7 
Xst ---- 1,3tPo/p**) . ,  

where Po and pc. are the stagnation pressures of the gas and the flooded space. Almost simultaneously, a shock-wave structure 

characteristic of a steady underexpanded jet is formed in the region adjacent to the nozzle exit. 
All of the above pertains to the formation of an equilibrium jet. At the same time, however, against the background 

of gasdynamic processes vibrational relaxation processes occur with characteristic times comparable to the rise times. The 

disequilibrium effects, in turn, affect the gasdynamic characteristics of the flow field 

2. Basic Equations. The process of formation of a relaxing jet is described by the system of equations 
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The relaxation equations describe 

characterizing the relation between the i-th 

considered (CO 2, N 2, and H20) are: 

where p is the gas density; p is the gas pressure; T is the temperature; e is the total energy of a unit mass of the gas; u and 

w are the components of the velocity V along the x and y axes (here and below the variable x is directed along the axis and 

y, orthogonally to the axis of the flow); ~s is the concentration of the s component of the mixture; and ei (v) is the energy of 

the i-th vibrational mode. 

the variation the vibrational mode energies, with the function Fi(~ s, T, p, ej(v) 

mode and all the others. The most important relaxation channels in the gas mixture 

CO2(010) + M ~ C 0 2 ( 0 0 0  ) + M,  

N2(1) + M ~ . N  2 + M e 

CO2(100) + M ~ C 0 2 ( 0 2 0  ) + M,  

C02(001) + M,~C02(030,II0 ) + M,, 

N2(1) + CO2(000 ) ~ N  2 + CO2(001 ). 

Here M i = CO 2, N 2, H20. The relaxation equations were described in the harmonic oscillator approximation [7] on the 

assumption that each vibrational mode i had a Boltzmann distribution with vibrational temperature T i (in particular, TI,  T2, 

T 3 are the vibrational temperatures of the symmetric, deformation, and antisymmetric modes, respectively, of  CO 2 and T 4 is 

the vibrational temperature of N2). 

3. Method of  Calculation. The numerical scheme for solving the resulting system of equations was chosen on the basis 

of the method of large particles [[8]. Within the framework of this method the initial system of equations (2.1) is split according 

to physical processes. The "still terms," describing the vibrational relaxation itself, now appear only in the system of the first 

(Eulerian) stage and can be integrated over each times step. At the same time the gas parameters at the boundaries of the 

computing cells were calculated by the "decay of explosion" scheme [9]; this made it possible to correctly describe the gradient 

terms in the regions where the flow turns, in particular at the nozzle edge. 

Following [8], we split the system of Eqs. (2.1) into two subsidiary systems. Then for the Eulerian stage we obtain 
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and for the Lagrangian we have 
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Fig. 1 

The relaxation equations contain source terms of the form p / ' " ". 1, where ei (v)0 is the equilibrium value of 

the energy and ~'i is the relaxation time of the i-th vibrational mode. These terms have a deleterious effect on the stability of 

the system as a whole, making it stiff [10]. An implicitly numerical scheme is generally used to integrate such stiff systems 

and as a result unconditional stability of the calculation is ensured. Unfortunately, the development of  completely implicit 

schemes for the problem of multidimensional hydrogasdynamics involves considerably technical difficulties. The different 

approach used here [11] makes it possible to overcome those difficulties. With this approach integration of  stiff terms and 

equations is put into a separate stage, in which all gasdynamic parameters are assumed to be constant. As mentioned above, 

in the large particles method the initial system of equations is split according to physical processes. Indeed, the "stiff terms" 

describing the vibrational relaxation itself are now contained only in the system of the first (Eulerian) stage and can be 

integrated over each time step. We can write each relaxation equation as 

d e  (~ 
' = a , -  b, el ~, (3.1) 

d t  

having grouped terms that do contain el(v) and those that do not. The coefficients a i and b i are unwieldy expressions, which 

are given in [5]. Assuming that those coefficients are constant on each integration step, we solve system (3.1) and obtain 

a 
e(V), t+~t  = ~ + 

i bi 

where At is the integration step of the relaxation equation; ei (v)' t, ei(V), t+At is the vibrational energy of mode i at the beginning 

and end of  the integration step. 

The t-mite-difference approximation of all the other terms on a computational grid with (Ax i, Au i) cells is standard [8], 

and we will not dwell on it. The range of  integration is divided into three parts, modeling the high-pressure chamber, low- 

pressure chamber, and nozzle. In the cylindrical (Cartesian) coordinate system each region was covered with cells having sides 

of Ax i and Ay i (i and j are the cell numbers). The regions adjacent to the nozzle on either size were covered with a grid of 

constant spacing. Starting from a number N x and N v (k = 1, 2 for the high-pressure and low-pressure chambers, respectively, 
k 

the cell sides increased according to the law e-%o) §247 (n = i,j and e > 1 [12]). 

The boundary conditions were given as follows: the solid walls (nozzle and wall separating the computational regions) 

are sealed while the conditions at the outer walls of a computational region are the same as in the corresponding chamber. At 

the same time, the program also provided for boundary conditions so that the gas counterflow and wake could be described. 

The asymptotic approximation of  the values of  the flow parameters calculated by the above procedure to the values 

calculated by the method used to calculated a steady jet [13], generalized to the case of vibrational-nonequilibrium flows, was 
used to check that a steady flow had been established. 

The computational scheme described above was implemented in a program used for numerous computations for the 

following range of parameters: the off-design factor, i.e., the ratio of the pressure at the nozzle exit to the pressure in the 
flooded space varied from 10 to 10 8, and the Much number of the jet at the exit varied from 0.7 to 10. Moreover, during the 

calculations we varied the geometry of the nozzle (and, hence, of the flow), the concentrations of  the components in the 

mixture, the initial temperatures in the high-pressure and low-pressure chambers, the nozzle throat diameter, etc. 
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Unfortunately, the capability of the program described above was limited seriously by the insufficient memory and 

speed of the computer used. In practice, therefore, all of the results reported below pertain to a region no more than 40-50 

calibers in size adjacent to the nozzle. 
4. Comparison with Experiment. The results of the numerical computation were compared with the experimental data 

obtained on a setup combining a shock tube of diameter 50 mm with a flat vacuum chamber in which a two-dimensional gas 

jet was bounded by walls at a distance L = 45 mm [5]. Gas heated by the reflected shock wave flowed out through a slit of 

half-width h. = 1 mm. The low-pressure chamber of the shock tube and the vacuum chamber were filled with the gas under 
study to a pressure p~. = 1.3-103-2.6"104 Pa. The pressure of the driver gas (He) was 2.10 -6  -5 .106 Pa. The equilibrium 

parameters of the gas beyond the reflected shock wave, i.e., the parameters of the drag of  the outflowing jet, varied over the 

ranges T O = 1500-2500 K and P0 = 10-6"6"106 Pa. The diagnostics of  a pulsed jet was done by means of  multichannel 

emission and absorption spectroscopy in the visible [2] and infrared regions. 
The experimental results for the steady stage of jet flow were compared with the calculations for steady jets and the 

asymptotic form of unsteady calculations. The results obtained by various methods were found to be in good agreement. The 

greatest discrepancy between the steady calculation and the experiment is for the vibrational temperatures of CO 2 in a mixture 

of CO 2, N 2, and H20. The explanation for this is that the parameters at the observation point do not manage to reach steady- 

state values during the experiment. 

The characteristics of  the flow in the unsteady stage of jet flow, which were determined in the experiments in the form 

of time dependences of the density and the vibrational temperatures at fixed points on the axis of  the flow, were compared with 

the results of  calculations in the same coordinates. 

Figure 1 shows the variation of the density p, vibrational temperature T v, and translational T on the axis of  the CO 2 

jet at distances x = 28 h.  from the nozzle exit: the points represent the averaged data from experiments with T O = 2000-2400 

K, P0 = 2"106-3.5"106 Pa, p~, = 3-103-104 Pa, and the curves represent data from calculations for T O = 2170 K, P0 = 

2.8-106 Pa, Po, = 5.103 Pa. Since the vibrational temperatures of  all the CO 2 modes in the experiments and in the calculations 

were similar, they represented by single averaged graphs T v = f(0. While the experimental and calculated results are similar 

overall, we see that the maximum density of the experimental vibrational temperatures is more elongated and the maximum 

is more compressed and intense than those of the calculated temperatures. 

Figures 2 and 3 shows the time behavior of  the vibrational and translational temperatures T i and T on the axis of the 

jet at a distance x = 28 h. from the nozzle exit, respectively, in mixtures of 9% CO 2 + 91% N 2 and 8% CO 2 + 86% N 2 

+ 6% H20 (T O = 2250 K, Po = 2-8"106 Pa). We see that the agreement between the experimental and calculated results is 
even better for the mixtures than for pure CO 2. The almost complete agreement of the absolute values of  the vibrational 
temperatures as well as their time distribution was unexpected. 

The fair agreement between the experimental results and the calculations indicates that the physical model adopted for 

the processes studied is correct. The computational programs developed can be used to describe a wide range of  phenomena 
associated with unsteady flows of molecular gases. 
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